Abstract
Electrocoagulation has attracted significant attention as an alternative to conventional chemical coagulation because it is capable of removing a wide range of contaminants and has several potential advantages. In contrast to most electrocoagulation research that has been performed with nonporous electrodes, in this study, we demonstrate energy-efficient iron electrocoagulation using porous electrodes. In batch operation, investigation of the external pore structures through optical microscopy suggested that a low porosity electrode with sparse connection between pores may lead to mechanical failure of the pore network during electrolysis, whereas a high porosity electrode is vulnerable to pore clogging. Electrodes with intermediate porosity, instead, only suffered a moderate surface deposition, leading to electrical energy savings of 21% and 36% in terms of electrocoagulant delivery and unit log virus reduction, respectively. Neutron computed tomography revealed the critical role of electrode porosity in utilizing the electrode’s Âé¶¹Ó°Òô surface for electrodissolution and effective delivery of electrocoagulant to the bulk. Energy savings of up to 88% in short-term operation were obtained with porous electrodes in a continuous flow-through system. Further investigation on the impact of current density and porosity in long-term operation is desired as well as the capital cost of porous electrodes.