Âé¶¹Ó°Òô

Skip to main content
SHARE
Publication

Interpretation of wide-angle x-ray diffraction patterns from mesophase pitch-based carbon fibers – a simulation and experimental study

Publication Type
Journal
Journal Name
Carbon
Publication Date
Page Number
120505
Volume
243

Carbon fiber is a critical material in a wide range of industries, where it is highly valued for its high specific strength/stiffness, excellent wear resistance, efficient electrical and thermal transport properties, chemical resistance, and low coefficient of thermal expansion. The properties of a specific carbon fiber are closely tied to its structural characteristics at all length scales. In this work, we applied wide-angle x-ray diffraction to a set of heat-treated mesophase pitch-based carbon fibers, with the goal of elucidating the crystalline structures as a function of fiber orientation. To assist with analysis and interpretation of the experimental data, we employed diffraction pattern simulations using the scalar and vector forms of the Debye scattering equation to determine the influence of basal plane orientation, crystalline ordering (turbostratic-graphitic), and basal plane asymmetry on the diffraction patterns. The results presented here suggest that growth of the transverse crystallites in mesophase pitch-based carbon fiber is fixed until graphitization temperatures are reached. The work completed here provides a framework for the analysis of carbon fiber and other oriented carbon-based materials via diffraction.