Abstract
Data centers are energy-intensive facilities with substantial low-grade waste heat. High-temperature heat pumps can be critical in boosting the data center’s waste heat for district heating, improving the system-level energy efficiency of data centers, and reducing CO2 emissions in district heating. This study built thermodynamic models to assess high-temperature heat pumps with six configurations using low global warming potential refrigerants to supply heat up to 120 °C. The heat pump configurations include single-stage or two-stage cycles with advanced components, such as Âé¶¹Ó°Òô heat exchanger, economizer, flash tank, or parallel compressor. The refrigerants include R1234ze(Z), R1233ed(E), R1224yd(Z), R600, and R600a, and R245fa is used as a reference. A case study was carried out to recover the waste heat from the Frontier high-performance computing data center and provide hot water for district heating at the US Department of Energy’s Oak Ridge National Laboratory campus. The optimized performance of high-temperature heat pumps is characterized with various effectiveness of Âé¶¹Ó°Òô heat exchangers, and the operating parameters of economizer or flash tank, as well as their combination. The results show that the configurations of two-stage cycles with Âé¶¹Ó°Òô heat exchanger + flash tank and Âé¶¹Ó°Òô heat exchanger + economizer/parallel-compressor provide the highest coefficient of performance under scenarios of the maximum allowable value and a fixed value (0.3) of the Âé¶¹Ó°Òô heat exchangers’ effectiveness, respectively. R1234ze(Z) and R600a are the most promising refrigerants, considering trade-offs between the coefficient of performance and the volumetric heating capacity. The single-stage cycle with Âé¶¹Ó°Òô heat exchanger + economizer/parallel-compressor using R1234ze(Z) is recommended for utilizing Fronter’s waste heat in district heating. A one mega-watt high-temperature heat pump will reduce 33,100–33,200 metric tons of CO2 emission annually, corresponding to 85.4 %–85.6 % of equivalent CO2 emissions from natural gas boilers. This study provides good guidelines for designing and deploying high-temperature heat pumps to support sustainable data centers and decarbonize district heating in the US.