
Filter News
Area of Research
News Type
News Topics
- (-) Microscopy (2)
- (-) Neutron Science (5)
- 3-D Printing/Advanced Manufacturing (1)
- Artificial Intelligence (3)
- Big Data (2)
- Bioenergy (1)
- Biology (2)
- Biomedical (1)
- Chemical Sciences (1)
- Computer Science (26)
- Coronavirus (1)
- Cybersecurity (5)
- Energy Storage (1)
- Exascale Computing (7)
- Frontier (6)
- Fusion (1)
- Grid (3)
- High-Performance Computing (13)
- Isotopes (1)
- Machine Learning (2)
- Materials (9)
- Materials Science (12)
- Nanotechnology (8)
- Physics (8)
- Quantum Computing (47)
- Quantum Science (70)
- Security (3)
- Simulation (10)
- Summit (3)
Media Contacts
Connect with ORNL
Get ORNL News

A team of researchers associated with the Quantum Science Center headquartered at the Department of Energy's Oak Ridge National Laboratory has confirmed the presence of quantum spin liquid behavior in a new material with a triangular lattice, KYbSe2.

Scientists at ORNL used neutron scattering to determine whether a specific material’s atomic structure could host a novel state of matter called a spiral spin liquid.

A team led by the U.S. Department of Energy’s Oak Ridge National Laboratory demonstrated the viability of a “quantum entanglement witness†capable of proving the presence of entanglement between magnetic particles, or spins, in a quantum material.

Scientists at ORNL and the University of Nebraska have developed an easier way to generate electrons for nanoscale imaging and sensing, providing a useful new tool for material science, bioimaging and fundamental quantum research.

Researchers at ORNL used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

A UCLA-led team that discovered the first intrinsic ferromagnetic topological insulator – a quantum material that could revolutionize next-generation electronics – used neutrons at Oak Ridge National Laboratory to help verify their finding.

Researchers used neutron scattering at Oak Ridge National Laboratory’s Spallation Neutron Source to investigate bizarre magnetic behavior, believed to be a possible quantum spin liquid rarely found in a three-dimensional material. QSLs are exotic states of matter where magnetism continues to fluctuate at low temperatures instead of “freezing†into aligned north and south poles as with traditional magnets.