鶹Ӱ

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 199 Results

Illustration of melting point of lithium chloride, which is shown with green and blue structures in two rows.

Scientists have developed a new machine learning approach that accurately predicted critical and difficult-to-compute properties of molten salts, materials with diverse nuclear energy applications. 

Illustration of an amino acid molecule that is going through a process from air to water with three phases, split into bubbles

Using the now-decommissioned Summit supercomputer, researchers at ORNL ran the largest and most accurate molecular dynamics simulations yet of the interface between water and air during a chemical reaction. The simulations have uncovered how water controls such chemical reactions by dynamically coupling with the molecules involved in the process. 

A color-enhanced 3D laser scan of a large concrete slab in a housing development, showing surface variations in shades of blue, green, yellow, and purple. Surrounding structures and terrain are rendered in black and white. The image was captured using the FLAT tool’s 360-degree scanning technology.

Researchers at ORNL have developed a tool that gives builders a quick way to measure, correct and certify level foundations. FLAT, or the Flat and Level Analysis Tool, examines a 360-degree laser scan of a construction site using ORNL-developed segmentation algorithms and machine learning to locate uneven areas on a concrete slab. 

Scientist standing beside mass spectrometry equipment in a laboratory, with instrumentation panels and analysis tools visible in the background

Robert “Bob” Hettich, an ORNL Corporate Fellow, is a pioneer in using mass spectrometry to uncover how microbes interact within complex environments and influence larger systems like plants and humans. A founder of the field of metaproteomics, he leads research that supports bioenergy, environmental resilience and health through advanced protein analysis.

Neus Domingo Marimon, ORNL scientist, poses for a photo in black with hair down

Neus Domingo Marimon, leader of the Functional Atomic Force Microscopy group at the Center for Nanophase Materials Sciences of ORNL, has been elevated to senior member of the Institute of Electrical and Electronics Engineers.

the foreground shows new macromolecules that could be made using a process invented by Oak Ridge National Laboratory chemists to upcycle the polymers from discarded plastics.

By editing the polymers of discarded plastics, ORNL chemists have found a way to generate new macromolecules with more valuable properties than those of the starting material.

Procter & Gamble scientists used ORNL’s Summit supercomputer to create a digital model of the corneal epithelium, the primary outer layer of cells covering the human eye, and test that model against a series of cleaning compounds in search of a gentler, more environmentally sustainable formula.

P&G is using simulations on the ORNL Summit supercomputer to study how surfactants in cleaners cause eye irritation. By modeling the corneal epithelium, P&G aims to develop safer, concentrated cleaning products that meet performance and safety standards while supporting sustainability goals.

ORNL chemist Benjamin Manard is posing for a photo with a light blue and navy background

Benjamin Manard, a nuclear analytical chemist at ORNL, has been named the 2025 winner of the Emerging Leader in Atomic Spectroscopy Award from Spectroscopy magazine. 

Chad sitting in a lab coat at a desk

Chad Parish, a senior researcher at ORNL, studies materials at the atomic level to improve nuclear reactors. His work focuses on fusion and fission energy, using microscopy and collaborating with experts to advance materials for extreme environments.

Researchers are looking at computers, working with a bright blue box in the middle of the table

Researchers at ORNL are using microwave radar reflection to nondestructively detect and measure the moisture content of materials within walls without removing drywall or cladding. This also expedites the moisture identification process and enables mold growth to be treated in the early stages.