Âé¶¹Ó°Òô

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 242 Results

Close up image of researcher's hands showing a PAN nanofiber next to a strand of human hair.

Stronger than steel and lighter than aluminum, carbon fiber is a staple in aerospace and high-performance vehicles — and now, scientists at ORNL have found a way to make it even stronger.

ORNL's Quantum Science Center Director is speaking to a attendee at Purdue University Quantum Science Center Summer School poster presentation

The fifth annual Quantum Science Center, or QSC, Summer School at Purdue University, held Apr. 21 through Apr. 25, 2025, welcomed its largest group of students to date. Experts from industry, academia and national laboratories gathered at the Purdue Quantum Science and Engineering Institute to share their research in multiple areas of quantum science.

Illustration of the GRETA detector, a spherical array of metal cylinders. The detector is divided into two halves to show the inside of the machine. Both halves are attached to metal harnesses, displayed against a black and green cyber-themed background.

Analyzing massive datasets from nuclear physics experiments can take hours or days to process, but researchers are working to radically reduce that time to mere seconds using special software being developed at the Department of Energy’s Lawrence Berkeley and Oak Ridge national laboratories.  

Illustration of a glowing black box emitting digital particles that form into a 3D model of an electrical grid infrastructure, set against a background of binary code and data visualizations.

Researchers at Oak Ridge National Laboratory have developed a modeling method that uses machine learning to accurately simulate electric grid behavior while protecting proprietary equipment details. The approach overcomes a key barrier to accurate grid modeling, helping utilities plan for future demand and prevent blackouts. 

 

Two cabinets of ORNL's Frontier supercomputer are open to show the blue and red cords on the inside.

Working in collaboration with researchers from Oak Ridge National Laboratory, D-Wave Quantum Inc., a quantum computing systems, software and services provider, has shown its annealing quantum computing prototype has the potential to operate faster than the leading supercomputing systems. 

Green and blue background of a graphic image that says Honors and Awards

Mariam Kiran, a quantum research scientist at the Department of Energy’s Oak Ridge National Laboratory, was recently honored as a finalist at the British Council’s Study U.K. Alumni Awards 2025, which celebrate the achievements of U.K. alumni worldwide.

Illustration of a virtual meeting on a laptop screen featuring diverse cartoon avatars of people in a grid layout. In the center, a logo reads “Winter Classic Invitational Student Cluster Competition.†The background consists of digital blue circuitry and data flow patterns, suggesting a technology or computing theme.

ORNL researchers helped introduce college students to quantum computing for the first time during the 2025 Winter Classic Invitational, providing hands-on access to real quantum hardware and training future high-performance computing users through a unique challenge that bridged classical and quantum technologies.

INCITE

The Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program has announced the 2026 Call for Proposals, inviting researchers to apply for access to some of the world’s most powerful high-performance computing systems. 

Research scientist Daniel Jacobson is standing with his arms crossed with a dark black backdrop

Daniel Jacobson, distinguished research scientist in the Biosciences Division at ORNL, has been elected a Fellow of the American Institute for Medical and Biological Engineering, or AIMBE, for his achievements in computational biology. 

Wall of black computer chords with blue wiring

Researchers from ORNL have developed a new application to increase efficiency in memory systems for high performance computing. Rather than allow data to bog down traditional memory systems in supercomputers and impact performance, the team from ORNL, along with researchers from the University of Tennessee, Knoxville, created a framework to manage data more efficiently with memory systems that employ more complex structures.