Âé¶¹Ó°Òô

Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 416 Results

ORNL researcher Van Graves examines a transparent cylindrical device he developed and tested at CERN in 2007 to demonstrate that a jet of liquid mercury could serve as a target for a neutrino factory or muon collider.

Van Graves, an engineering manager at ORNL, is celebrating 40 years of dedicated service leading a diverse range of prominent engineering projects at ORNL and internationally. 

Three profile photos of ORNL researchers are cut out into one image representing three new members of leadership for the Center for Bioenergy Innovation

The Center for Bioenergy Innovation, or CBI, at the Department of Energy’s Oak Ridge National Laboratory has promoted Melissa Cregger and Carrie Eckert to serve as chief science officers, advancing the center’s mission of Âé¶¹Ó°Òôs for new domestic biofuels, chemicals and materials.

Five scientists and one in a boat are conducting fish sampling for the biological monitoring program on the DOE Oak Ridge Reservation.

ORNL’s Biological Monitoring and Abatement Program, or BMAP, is marking 40 years of helping steward the DOE’s 33,476 acres of land on which some of the nation’s most powerful science and technology missions are carried out. 

Graphic depiction of a neutron star, which looks like orange beans inside a cage

Using the Frontier supercomputer, a team of researchers from the Massachusetts Institute of Technology conducted large-scale calculations to chart the isospin density of a neutron star across a range of conditions. Their work provides new insights into how pressure and density interact within neutron stars, offering important predictions about their inner workings.

Using a toolpath strategy for weight reduction, two near-net shape dies were manufactured using a gas metal arc welding additive manufacturing process at the Lincoln Electric Additive Solutions facility. Credit: Lincoln Electric

Recent advancements at ORNL show that 3D-printed metal molds offer a faster, more cost-effective and flexible approach to producing large composite components for mass-produced vehicles than traditional tooling methods.

Oak Ridge High School student is working on an 3D printing machine donated by UT-Battelle

UT-Battelle has contributed up to $475,000 for the purchase and installation of advanced manufacturing equipment to support a program at Tennessee’s Oak Ridge High School that gives students direct experience with the AI- and robotics-assisted workplace of the future. 

A 3D printing nozzle wrapped in insulation extrudes black composite material into a small square mold on a green and white flat surface in a lab setting. Inset shows a close-up of a pressure gauge connected to brass valves and tubing.

Scientists at ORNL have developed a vacuum-assisted extrusion method that reduces Âé¶¹Ó°Òô porosity by up to 75% in large-scale 3D-printed polymer parts. This new technique addresses the critical issue of porosity in large-scale prints but also paves the way for stronger composites. 

ORNL researcher Jesse Labbe is working with plants in a greenhouse. He is framed on all sides with bright green leaves

Jesse Labbé aims to leverage biology, computation and engineering to address societal challenges related to energy, national security and health, while enhancing U.S. competitiveness. Labbé emphasizes the importance of translating groundbreaking research into practical applications that have real-world impact.

Group of 11 people, 9 standing and two sitting are posing for a photo in front of University of Oklahoma red and white backdrop with UO logo. The two in front are shaking hands

The University of Oklahoma and Oak Ridge National Laboratory, the Department of Energy’s largest multi-program science and energy laboratory, have entered a strategic collaboration to establish a cutting-edge additive manufacturing center. 

A 3D rendering of a large, white protein complex bound to a purple strand of guide RNA, which is aligned with a blue double-helix DNA strand. The background is a soft gray with scattered, blurred molecular shapes.

Scientists at Oak Ridge National Laboratory and the University of Colorado Boulder used a gene-silencing tool and a large library of molecular guides to understand how photosynthetic bacteria adapt to light and temperature changes. They found that even partial suppression of certain genes yielded big benefits in modifying the stress response of wild microbes.